

SUNG RIM

Sapphire (Al₂O₃) - datasheet

Synthetic Sapphire is a single crystal form of corundum, Al₂O₃, also known as alpha-alumina, alumina, and single crystal Al₂O₃. Sapphire is aluminium oxide in its purest form with no porosity or grain boundaries, making it theoretically dense. The combination of favourable chemical, electrical, mechanical, optical, surface, thermal, and durability properties make sapphire a preferred material for high performance systems and component designs.

Unique properties to be mentioned (among others):

- excellent transmission in a wide range from UV to IR
 chemical inertness and outstanding durability against aggressive media
 extremely good thermal conductivity
 very good resistance against high temperatures and thermal shocks
 unexcelled scratch resistance
 preeminent corrosion- and abrasion resistance

- unique hardness (just beaten by diamond)
- best electrical features (high electric resistance, large dielectric constant) Those features have made synthetic sapphire the material of choice for demanding applications in semiconductor, aerospace, analytics, medical, optics and watch industries.

Chemical formula	Al_2O_3
Crystal class	Hexagonal system, rhomboidal class 3m
Lattice constants, A	a = 4.785, c =12.991
Density, g/cm ³	3.98
Melting point, °K	2303
Hardness	Knoop (daN/mm²): 1800 parallel to C-axis, 2200 perpendicular to C-axis, Mohs: 9
Optical transmission range, µm	0.17 – 5.5
Refractive index at 0.532 µm	n ₀ = 1.7717, n _e = 1.76355
Water absorption	nil
Young Modulus, Gpa	345
Shear Modulus, Gpa	145
Bulk Modulus, Gpa	240
Bending Modulus (Modulus of Rupture), Mpa	420 at 20°C, 280 at 500°C
Elastic Coefficient	C11 = 496, C12 = 164, C13 = 115, C33 = 498, C44 = 148
Poisson ratio	0.25 - 0.30
Friction Coefficient	0.15 on steel, 0.10 on sapphire
Tensile strength, MPa	400 at 25°, 275 at 500°, 345 at 1000°
Flexural strength, daN/mm²	35 to 39
Compressive strength, GPa	2.0
Young's modulus E, daN/mm ²	3.6 x 10 ⁴ to 4.4 x 10 ⁴
Specific heat, J/(kg x K)	105 at 91°K, 761 at 291°K
Thermal coefficient of linear expansion,	
K ⁻¹ , at 323K	6.66 x 10 ⁻⁶ parallel to optical axis, 5 x 10 ⁻⁶ perpendicular to optical axis
Thermal conductivity, W/(m x K) at 300K	23.1 parallel to optical axis, 25.2 perpendicular to optical axis
Resistivity, Ohm x cm	10 ¹⁶ (25°), 10 ¹¹ (500°), 10 ⁶ (1000°)
Dielectric constant	11.5 (10 ³ – 10 ⁹ Hz, 25°) parallel to C-axis, 9.3 (10 ³ – 10 ⁹ Hz, 25°) perpendicular to C-axis
Dielectric strength, V/cm	4 x 10 ⁵
Loss tangent	1 x 10 ⁻⁴
Solubility	
- in water	insoluble
– in HNO₃,H₂SO₄, HCl, HF – in alcalis	insoluble to 300°C insoluble to 800°C
- in melts of metals Mg, Al, Cr, Co,	insoluble to 600 C
Ni, Na, K, Bi, Zn, Cs	insoluble to 800 – 1000°C
g-radiation stability	No change in transmission above 2.5 mm after exposure to 10 ⁷ Rads.
,	No visible coloration after exposure to 10 ⁸ Rads/hr for 60 minutes at – 195°C
Proton radiation stability	No change in transmission below 0.3 μm after exposure to 10 ¹² proton/cm ² total dose
Chemical resistance	Sapphire is highly inert and resistant to attack in most process environments including
	hydrofluoric acid and the fluorine plasma applications commonly found in
	semiconductor wafer processing (NF3, CF4)

SUNG RIM

Polished sapphire dome

Transmission spectrum of a 2 mm thick sapphire window

Why us?

- We do not offer "catalogue" parts.
- Instead we focus on customer specifications and requirements only.
- "Special features" such as coatings, engravings, etchings etc. are standard for us.
- We deliver smallest batch sizes (≥1) up to >100k pieces at most economic conditions and with reasonable leadtimes.
- We support customers with cost effective designs (if required).
- We do not have to be the cheapest, but the price worthiest.
- We believe in high level customer service, short response times and long term reliability.
- We measure our success solely in customers' satisfaction.

in touch with future